Employee stock option valuation with an early exercise boundary

Neil Brisley
Finance Area
Richard Ivey School of Business
University of Western Ontario

Chris K. Anderson
Operations Department
School of Hotel Administration
Cornell University

FEI conference, Jasper, 10th June 2008
Employee Stock Option Valuation

Black & Scholes model

vs.

Binomial Lattice models

Hull & White (2004, FAJ)

Brisley & Anderson (2008, FAJ)
ESO valuation: Why do we care?

• Accounting profits/disclosures/analyses
 – Black/Scholes permitted, Lattice models preferred

• Real compensation decisions
 – Interpreting competitive peer group data
 – Determining option awards
 • ‘$ per option’ estimate may affect ‘number granted’
 e.g. “$1 million option award”
 @ estimated $4/option → 250,000 options
 @ estimated $5/option → 200,000 options
 – Managing the optics
Employee Stock Option

Before vesting: No exercise

After vesting: voluntary early exercise permitted

Quit → forfeiture

Quit → forced early exercise

Quit → forfeiture
Black/Scholes for ESOs

- *Ignores* all vesting conditions (time & perf.)
- Combines all experience/estimates of quitting and voluntary early exercise into a single estimate of ‘Expected Life’.

Example:
- initial stock price $10; strike price $10
- interest rate 5%p.a.; volatility 40%p.a.
- maturity 10 years; expected life?
Black & Scholes, ESO prices

- Expected life "4 yrs" $3.82
- Expected life "8 yrs" $5.43

Graph showing stock price over time with maturity as a parameter.
Binomial Lattice (binomial ‘tree’)

- Can handle vesting conditions (time & perf.)
- Can treat separately the estimates of
 - quitting
 - voluntary early exercise
- Example: (maturity 10 years)
 - initial stock price $10; strike price $10;
 - interest rate 5%p.a.; volatility = 40%p.a.
 - Quit rate? Voluntary early exercise policy?
Hull & White (2004, *FAJ*): quit probabilities; vesting; voluntary exercise when stock reaches *fixed* multiple of strike price
Hull/White: voluntary exercise if stock reaches fixed multiple of strike price

Stock price

$30

$20

$10

0

vesting date

10 yrs maturity

Quit → forfeiture

Quit → forfeiture

Voluntary exercise boundary
Hull/White: ESO prices

Stock price

$25

$20

$15

$10

vesting date

“2.5-times strike”
gives $5.09

“1.5-times strike”
gives $3.85

10 yrs maturity

10 yrs
Early exercise ‘policy’

- Black/Scholes assumes employees exercise at some target *date* (whether in-the-money by $0.01 or by $100.00...).
 - ‘Vertical’ exercise boundary
 - Assumes employees ignore option time value...
- Hull / White assumes employees exercise at some target *stock price* (whether achieved very early in option life or very late).
 - ‘Horizontal’ exercise boundary.
 - Assumes employees ignore option time value...
Bettis et al. (2005):

• Employees require *high* stock price to induce exercise *early* in option life.
• But willing to exercise at *lower* stock prices *later* in option life
• Employees exercising early typically capture 80%-90% of the *remaining* option value. And this statistic is relatively stable whether stock prices grew fast or slow.
Early exercise ‘policy’

• Brisley/Anderson assumes employees exercise early when they can achieve some target *fixed percentage* of the *remaining* option value.
 – Assumes employees trade-off *intrinsic value* (moneyness) captured vs. *time value* forgone
 – Gives ‘Downward sloping’ exercise boundary
Brisley/Anderson (2008, FAJ): quitting; vesting; voluntary exercise at fixed % of remaining option value
Brisley/Anderson (2008): voluntary exercise at fixed % of remaining option value

Voluntary exercise boundary

Quit → forfeiture

Stock price

$25

$20

$15

$10

0

vesting date

10 yrs maturity

Quit → forfeiture

Quit → forfeiture
Brisley/Anderson (2008), ESO prices

- "90%" gives $5.42
- "80%" gives $4.82
- "70%" gives $4.21
Brisley/Anderson (2008 *FAJ*)

- We offer a new lattice model for valuing ESOs
 - Straightforward and intuitive
 - Approximates better the real exercise decisions of employees
- B/A option prices can be lower or higher than B/S or H/W prices. But we show why our model is more ‘stable’ – the $ price outputs are less *sensitive* or vulnerable to unusual historical exercise data from firms with atypical stock price histories.
Estimating the inputs

- “…assumptions, such as the employees’ expected exercise behavior, may be derived from the entity’s own historical experience…” [FAS123R]

Black/Scholes: time to exercise

Hull/White: stock price (multiple of strike) at exercise

Brisley/Anderson: percentage of remaining option value captured at exercise
Employees require *high* stock price to induce exercise *early* in the life, but *lower* stock price to exercise *later on*.
Black/Scholes: prior experience of option lives may depend on stock price history...

- Expected life “4 yrs”:
 - $3.82

- Expected life “8 yrs”:
 - $5.43
Hull/White: prior experience of ‘exercise multiple’ may depend on stock price history…
Brisley/Anderson (2008), prior experience of ‘% option value captured’ is less sensitive to stock price history…
Takeaway on ESO valuation:
vesting + quitting + voluntary early exercise

Black/Scholes model, ‘expected life’

vs.

Binomial Lattice models

Hull & White (2004, FAJ)
Brisley & Anderson (2008, FAJ)

• stock price histories affect past early exercise behaviours. Affects $$-valuations…

• choice of model affects $$-valuations…